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Motivation

How can we combine deep learning and logic reasoning to leverage existing
model biases?

Symbolic Execution Neural + Symbolic Neural Execution
Interpretable Comp. Efficient
Extensible ? Data Hungry

Not Interpretable

Not Comp. Efficient |




Research Directions

More specifically we will look at:

* Image Question Answering

* How do we run real world inference and training given symbolic representations?

 Given natural inputs, can we quantify and leverage the uncertainty in their underlying
symbolic representations?

 Rule learning and inference over videos



Real world symbolic execution and
training



Real World Symbolic Execution - Example

Visual question answering with common sense.
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Huang, et al. Scallop: End-to-End Differentiable Reasoning at Scale. Under review at ICML21
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Real World Symbolic Execution - Example

Logical programming executi

on

—

B Scene Graph C Knowledge Graph D [Natural Language Question
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Prolog F name(02, giraffe). G is_a(giraffe, mammal). H Programmatic Query
(Turing Complete) attr(02, tall). is_a(mammal, animal). target(O) :- name(O, animal),
Wl left(012, 02). name(O, N) :- name(O, N'), is_a(N', N). attr(O, tall),
(P-Complete) |Eft(0, O')-
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Real World Symbolic Execution - Issues

Probabilities for selecting an object conditioned on the requires
analyzing all possible combinations that satisfy the query.

name(O, animal) :- name(O, O"), is_a(O', animal). intermediate(O) :- left(O, Q"), attr(O, tall)
( 0.83 0.08 0.02 ) ( 0.77 0.71 0.69 )
1.00::is_a(giraffe, animal) \\ /1.00::is_atiger, animal) \ (1.00::is_a(wolf, animal) Top-3 0.92::left(02, ol) 0.85::left(02, 03) 0.82::left(02, 04)
0.83::name(02, giraffe) 0.08::name(02, tiger) 0.02::name(02, wolf) > Natural € 0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall)
Join
S; name(02, animal) S, intermediate(02)
N J N J

target(O) :- name(O, animal), left(O, O"), attr(O, tall).




Real World Symbolic Execution - Issues

Probabilities for selecting an object conditioned on the
analyzing all possible combinations that satisfy the query.

name(QO, animal) :- name(O, O'), is_a(O', animal).

requires

intermediate(O) :- left(O, O"), attr(O, tall)

( 0.83 0.08 0.02 h g 0.77 0.71 0.69 )
1.00::is_a(giraffe, animal) 1.00::is_a(tiger, animal) 1.00::is_a(wolf, animal) Top-3 0.92::left(02, ol) 0.85::left(02, 03) 0.82::left(02, 04)
0.83::name(02, giraffe) 0.08::name(02, tiger) 0.02::name(02, wolf) »| Natural € 0.84::attr(02, tall) 0.84.::attr(02, tall) 0.84::attr(02, tall)
Join
Sy name(02, animal) S, intermediate(02)
NG J \ J
target(O) :- name(O, animal), left(O, Q'), attr(O, tall).
( 0.64 0.59 0.57 0.06 0.01 )

1.00::is_a(giraffe, animal)
0.83::name(02, giraffe)
0.92::left(02, ol)
0.84::attr(02, tall)

1.00::is_a(giraffe, animal)
0.83::name(02, giraffe)
0.85::left(02, 03)
0.84::attr(02, tall)

1.00::is_a(giraffe, animal)
0.83::name(02, giraffe)
0.82::left(02, 04)
0.84: :attr(02, tall)

VS

target(02)

1.00::is_a(tiger, animal)
0.08::name(02, tiger)
0.92::left(02, ol)

0.84::attr(02, tall)

... 4 other proofs ...

Se=5,&"S,
_

1.00::is_a(wolf, animal)
0.02::name(02, wolf)
0.82::left(02, 04)

0.84::attr(02, tall)




Real World Symbolic Execution - Issues

As the number of objects, knowledge, facts, and query length grows, this
computation is exponential!

target(O) :- name(O, animal), left(O, Q'), attr(O, tall).

( 0.64 0.59 0.57 0.06 0.01 )
1.00::is_a(giraffe, animal) 1.00::is_a(giraffe, animal) 1.00::is_a(giraffe, animal) 1.00::is_a(tiger, animal) 1.00::is_a(wolf, animal)
0.83::name(02, giraffe) 0.83::name(02, giraffe) 0.83::name(02, giraffe) 0.08::name(02, tiger) 0.02::name(02, wolf)
0.92::/efi(02, o1) 0.85::/efi(02, 03) 0.82::0efi(02, od) 0.92::lefi(02, ol) - 4 other proofs ... 0.82::1eft(02, 04)
0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall) 0.84::attr(02, tall)
Sq =8; Qs 9 target(02)
- J

\ J
|
Intuition: take the combinations at each step.




Real World Symbolic Execution - Scallop

Pass through gradients in addition to the combination probabilities to
enable end-to-end training.

Datalog Program

/

0.03::name(o,, giraffe); ...

Prob. Facts

0.7::attr(o,, tall).

Perception Model

Learning Pipeline (4.2)

Back. Prop.

<

Loss Function

<

Ground Truth

target(o,), target(o;,)

target(O) :- 1s(O, herbivorous).

Datalog Query

Grounding

Inference Pipeline (4.1)

Evidence Set

WMC

/ Diff. Prob. Output

P(target(o,)) = (0.7, V)
P(target(o;,)) = (0.8, V)

10




Scallop - Results

On a Dataset leveraging GQA and ConceptNet for the knowledge base.

| 0 DATALOG-RL | [INMN | ] Scallop UOk=1l/k=5/Tk=10l/ k=15
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Scallop - Future Work

* How to integrate natural queries?
* How does it scale to noisy knowledge bases?

e Can we better estimate the gradient?



Recovering probabilistic symbolic
representations from natural data



Symbolic Execution - NS-VQA

Discretize the query as well as the objects.

(a) Input Image (b) Object Segments (¢) Structural Scene Representation

Size Shape  Material Color X y z
Small Cube Metal Purple -0.45 -1.10 0.35
Mask
| R-CNN Large  Cube Metal Green  3.83  -0.04 0.70

Large Cube Metal Green -3.20 0.63 0.70
Small Cylinder = Rubber Purple 0.75 1.31 0.35
Large Cube Metal Green 1.58 -1.60 0.70

L. Scene Parsing (de-rendering) l
II. Question Parsm.g III. Program Execution
(d) Question (Program Generation) (¢) Program
1. filter_shape 3. filter_shape
| LSTM | — 1. filter_shape(scene, cylinder) 2. relate 4. filter_size 5. count
— 2. relate(behind) ID Size Shape .. ID  Size

How many cubes that

are behind the cylinder —> é‘ni];ﬁda —> 3. filter_shape(scene, cube) —> ; imm gu:e i ige Answer: 3
9 arge ube ... ge
are large? —> 4. filter_size(scene, large) 5 Lo i 5 T
[ LsTM | = 5. count(scene) 5 Large Cube

Yi. et al. Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. NeurlPS’18



Symbolic Query Q: Docs the g oot of the s
cube have the same shape as the
N s C L purple matte thing?

Step1: Visual Parsing

Obj 1
Obj 2
Obj 3
Obj 4

Step2, 3: Semantic Parsing and Program Execution

Dlscretlze the query bUt ?Program Representations Concepts  Outputs

keep the uncertainty in Fiiter | i creen Cabe
the vision. | -

“Relate | FREME ove2 | 10
|
I
Criter | PRE BN e "
|
. Filter ' I Purple Matte __._

1
AEQuery | Obiect]  Obied3  Shape No (0.98)
I

|
v

Mao. et al. The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supetrvision. ICLR’19



Prob. Query and Vision

What if we carry the uncertainty for both the vision and the logical
representations?

What is the shape
of the object
behind the tiny

red thing?
( |
A4
Function Function Argument ( . ) M
Head C Heads > Object Parser emory
A
y \i y y
Iter 1. P(Filter Size) = 0.9 * P(small)=.9 * P(small) =[.96, .88, .23]) =[.77, .71, .18] -> Mget
Iter 2. P(Filter Color) =0.72 * P(small) =.88 * P(small) =[.01, .91, .88]) * mget =[.00, .41, .10] -> Mget
Iter 3. P(Unique) = 0.99 * sharpen(mge) = [ .00, .99, .00] -> Myet
Iter 4. P(Relate) = 0.85 * P(behind) = .88 * P(behind) =[.01, .00, .97]) = [.00, .00, .72] -> mget
Iter 5. P(Unique) = 0.99 & sharpen(Mget) = [ .00, .98, .00] -> Mget
Iter 6. P(Query Shape) = 0.72 * P(shape=sphere | obj = 3) = .89 * Mget = [ .00, .41, .10] -> Mghapd
ASr;JSI,'V;% <«—— {cylinder: .00, sphere: .62, cube: .00} <—J

Samel, et al. How to Design Sample and Computationally Efficient VQA Models. In Progress
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Why is this hard?

Exponential space of possible queries and solutions as the length grows.

Intuition: Compute the expected output conditioned on the current query
function and the vision.

Question
Parser
VQR Cell
& y
Object @nction Attenti@
Arguments
Parser < ) l
=( Function Fused
»\ Executor 'Y Memory
Memor Function
Y Memory| | |~

Update

.‘




Differentiable End-to-End Program Executor (DePe)

DePe Overall
Object :
[>< Parser }L Repeat for K r)e\asonmg steps

VQR Cell VQR Cell VOR Cell
What is the shape _
of the object —t Question \ ¢ / —>sphere
behind the tiny Parser [___

red thing? ‘ }
Memory

The key is to design the memory can handle:
e Symbolic representations
* Sub-queries

* Gradient computation throughout the entire execution

18



DePe - Results

Results on CLEVR. Results on GQA in progress.

Sample Efficiency
QA
Data % | Stack-NMN NS-CL DePe
1% 43.6 68.1 65.4
5% 66.6 86.7 87.7
10% 80.6 98.8 98.0

Validation Accuracy

Computation Efficiency

100 —
80 B
60 P
40 s NS-CL

Stack-NMN
20 DePe
0 >
0 02 04 06 0.8
Train Samples 107

19



DePe - Future Work

* Does the DSL cover natural questions?

e Can we use entire image based features for non-object centric reasoning?

* Instead of image embeddings, or symbolic attributes can we store attribute
embeddings in memory?



Recovering logic rules from
timeseries data



Background- Inductive Logic Programming

Given data on entities and their relations, can we derive new composite
relations (rules)?

HasOfficelnCity(New York, Uber)

CitylnCountry(USA, New York)
Y =USA

X = Uber v
In which country Y
doeX have office? HasOfficelnCountry(Y, X) € HasOfficelnCity(Z, X), CitylnCountry(Y, 2)
O
HasOfficeInCountry(Y, X) ? X=1 7\
50 Y =France

HasOfficelnCity(Paris, Lyft)
CitylnCountry(France, Paris)

Given X can we walk along a knowledge graph to arrive at Y, and vice versa.

Yang, et al. Differentiable Learning of Logical Rules for Knowledge Base Reasoning. NeurlPS'17



Background- Inductive Logic Programming

Given sparse representations of entities X, Y and relations R, determine
which relations are required to arrive from X to Y

S = Z (o (Ilxep, Mg, vx)), score(y | x) = V;‘,Fs
l

Here we assume that that the entities, as well as their relations are provided.
Can we assume this in timeseries data?

Yang, et al. Differentiable Learning of Logical Rules for Knowledge Base Reasoning. NeurlPS'17



Problem Formulation - Time Series

* Investigating timeseries inference where observed events induced by a
compact subset of other events:

long jump := before(run, jump)

 We may have labeled atomic event data, but rarely explicit relational data.

« Can we learn both the rule structure and the relation parameters for logic
time series?



High Level Framework

Can we implicitly leverage the temporal relations between events?:
* Optimize relations and rule structure end-to-end.
 Extract the underlying temporal logic rules for verification or discovery.

= Logic
Temporal Relation Rules

Networks
—>H<—Verfy

MT { MR
80
—— Event
a2 R
%f_/\‘/fe\\‘\ H—J\;\i\\o f¢ _
Time AN Event € —»| |<+——Supervise
\ j \ Labels

J
Y Y 25

Paramter Learnina Structure Learnina



Temporal Relation Networks - Learning

- Logic
Temporal Relation Rules
Networks
’_’I<—Verify
MT MR
&0
——» Event
. ~ J \,é\\(\es — ”/éi\o(\e f b
Time S Event @ <——Supervise
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Paramter Learning Structure Learning
Paramter Learning
Temporal |
My Conv Mc @ Mp My I M
> = > [ before [
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—

Event Probs Time



Temporal Relation Networks - Learning

- Logic
Temporal Relation Rules
Networks

MT MR
0
—— Event |Y|
) arg min — E E y;i - log(y;)

\ l\// (\66 ’(\0(\6 9a¢ -~ s
~ o0 T | Sy . (3,y) i=1

Time W Event & <«——Supervise

s.t. min HMR — 1\_/IR”F
Labels

. RN ) min || M, ||
Y Y

Paramter Learning Structure Learning
Paramter Learning
Temporal |
My Conv Mc @ Mp M, | M
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Temporal Relation Networks - Extraction

 Given the weights of the structure model, we take the highest weighted
fact triplets to generate the rules of length k.

flyr) == /\ re(Tu, To) 53 P(f(Yr)) = Haiyf

1=1

* Variable length rules we can explore tree based methods.



Current Work - Synthetic Verification

On synthetic data we can objectively evaluate our temporal rule extraction.

slide

pick-place

Event 5 :- during(pick-place, slide)

Puig et al. Virutalhome: Simulating household activities via programs. CVPR’18

How to do anything... Knowledge Base of Household Tasks

Work on computer Make coffee Read a book

Turn on your computer and Go to the kitchen and Sit down in recliner. Pick up

sit in front of it. Type on the keyboard, swith on the coffee machine. Wait until a novel off of coffee table. Open novel to
grab the mouse to scroll. it’s done and pour the coffee into a cup. J last read page. Read.

4 VirtualHome

robot playground

program

29

Rohit Girdhar and Deva Ramanan. CATER: A diagnostic dataset for Compositional Actions and TEmporal Reasoning. ICLR’20




Future Work - Proposed Datasets

On real world timeseries data we can subjectively evaluate our rule
proposals.

) Trends in Electricity Consumption
Start time: 00:21 00:54 01:06 01:56 02:41 03:08 03:16 03:25
End time: 00:51 01:03 01:54 I 02:40 L 03.00'— 03:15 (- 03:2503:28 1600
N " s I 5 . | I3 ¥ 1) o 1
A RER o IS ) P R A LTI T N O R z
e ——————— 1 1 1 1 © 1400
= 1 s ([P g
P 1 f : 1 S
. - o X £
- <& - - = = A 2
Grill the tomatoes in | h ’\\;‘ . Sprinkle salt and E a S
a pan and then put ~ 4 “ pepper to taste. = ‘¥ pacea piece of 1000 32“):; ling M
them on a plate. Add oil to a pan and spread  Cook bacon until crispy, o f - . Place a piece of lettuce as Place the bacon at bread at the top. i T-rendo(i;';gid T:;Img Mean)
it well so as to fry the bacon  then drain on paper towel “9d @ bit of Worcestershire 4, firct jayer, place the the top. 800
sauce to mayonnaise and ¢, -«0es over it
spread it over the bread. . 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

30
Zhou et al. Towards Automatic Learning of Procedures from Web Instructional Videos. AAAI'18



Future Directions



Multi-Modal Knowledge Construction

* We leverage a small percentage of structured data for knowledge based
methods

* Most recent works focus on construction based on single modalities, ie
text.

* How do we leverage jointly leverage unstructured text, images, or videos to
construct this knowledge?



Multi-Modal Knowledge Construction

Fill in knowledge gaps in specific domains.

o e - e - - - e e = = e = = = = = o = = e = = = — = e e Em Em em em e e e

Color

| ¥ T W |
: (e : .- ‘_K :
i This lapel X : | |
I shirt can be paired | < :
i with black shoes X o |
: ...... 1 : : A t :
| T | |
i Attribute Value i { i
i Collar Type | lapel 4.; .......... |
| ,'

N e e e e -

_________________________________________________________

Zhu et al. Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Product. EMNLP’20



Multi-Modal Knowledge Construction

Attribute Prediction Value Extraction

Material, Collar Type Value of Material Value of CoIIar Type

——— e e e e e e e e o — — — — —— — —— ——— ———, ——— o ——— ——

@
O
O
O
1O
@
O
O
O
o

A

Regional Visual Gate

000000000 0—8—

Global Visual Gate

@0«

@

— Cross-Modality Attention

This wool trench coat features an elegant big lapel design

Textual Product Description

Zhu et al. Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Product. EMNLP’20

Product Image

\" ResNet /|

34



Constructed Knowledge for Real World Tasks

* We have seen methods leveraging a DSL to reason over scene graphs and
knowledge graphs.

* How effective are these functions given natural queries?
* Are there effective ways to determine a compact subset of these functions?

* Are there more effective methods besides just pure discrete reasoning vs
neural reasoning (GNN)?



Research Summary

Covered a range of works in the neuro-symbolic spectrum:

* Image Question Answering
* Real world symbolic execution and training
* Handling uncertainty in symbolic learning

* Rule learning and inference over videos

* Future Directions
* Multi-modal knowledge construction
* Real world reasoning over inferred knowledge
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