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Machine Reasoning

There are many works that optimize ML models by themselves.

How are these models leveraged in a larger system?

Instruction R R — Cleared table

Cereal Apple Storage Fruit basket  Trash can

(a) Human: “The box on the left is empty. Clear the table.”

Nyga, et al. Grounding Robot Plans from Natural Language Instructions with Incomplete World Knowledge. CoRL’18



Visual Reasoning

Part I: Visual Question Answering



VQA Motivation

Testbed in visual question answering (VQA). Why is it hard?

 There are not a fixed number of output labels.

* Questions are compositional in nature, thus many possible inputs.

Can we leverage the structure of scenes and questions to reduce the data requirement?



VQA Datasets

Given an image and question, how do we arrive to the answer?

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Johnson, et al. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. CVPR’17
Hudson, Manning. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. CVPR’19

Figure 1: Examples from the new GQA dataset for visual reason-
ing and compositional question answering:

Is the bowl to the right of the green apple?

What type of fruit in the image is round?

What color is the fruit on the right side, red or green?

Is there any milk in the bowl to the left of the apple?



VQA Datasets

Auxiliary labels such as scene graphs and functional programs provided.

Left vs. right

Left Right

In front vs. behind

Behind
In front

Sample chain-structured question:

Filter Filter Ui Relate Filter e Query
color shap sha p color

yellow sphere right cube

What color is the cube to the right of the yellow sphere?

What color is the food on the red object left of the small girl that

is holding a hamburger, yellow or brown?

Select: hamburger — Relate: girl,holding — Filter size: small — Relate: object,

left — Filter color: red — Relate: food,on — Choose color: yellow | brown



Program structure for VQA data

CLEVR

“What color is the large round object is to
the left of the green cylinder?”

Program Selection

[ Filter ( [green, cylinder] ) ]—’0
[ Relate (0, left) ]—’9

[ Filter (e . [round, large] ) ]—’Q

A: Red

Johnson, et al. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. CVPR’17



Program structure for VQA data

GQA

“What is the yellow food to the left of the
small girl that is holding the hamburger?”

Program Selection
4 N\
Filter ( hamburger )
\_ J
4 N\
Relate (€}, holding)
\_ J

Filter (9, [small, girl])

coses

Relate (€)), left)
Filter (0, yellow] )
|\ J
A: Fries

Hudson, Manning. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. CVPR’19



Modeling Approaches

Tradeoffs:

Deep Networks « 1) Implementation X Modular Networks
X 2) Interpretability v
1 3) Label requirements | Imfge Te
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Imalge Text
Embedding
Text < : <
Embedding 4 )
" J

Cross-Modal
Transformer

Modular Network
Filter
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Modeling Approaches - Transformers

LXMERT
Imalge

Object Embedding through R-CNN and ResNet

Text Embedding initialized from scratch Text
Embedding

Embeds both the text and image features

through the BERT encoder Language

BERT

Constructs a joint representation of the
image and language BERT features

Cross-Attention BERT

a

Pretrained on VQA and image training
splits, FC fine tuned on each task

10
Tan, Bansal. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. EMNLP’19



Modeling Approaches - Transformers

SVDR 'mjge

Text
Embedding

Same as LXMERT =—==<

Language
BERT

Disjoint Language and Image encoder Shared BERT

for pretraining L

Modular Network
Modular network functions as cross-modal Filter,
transformers Relateg

Filter,

a

Liu, et al. Static-Dynamic Reasoning via Functional Programs. (WIP)



Modeling Approaches - Graph Traversal

Imalge

Language Conditioned Graph

Networks (LCGN) fext

Embedding

Use LSTM to encode question g

Text commands c; | g are encoded for T’ timesteps P

Encoder

Message passingonthe W;; computed from x; ™, x; ™%, ¢, Language-
object embeddings x; m;; computed from w;, x; 7%, ¢, Conditioned Graph
occurring T times: x{ = FC ([x{~5 X;m}]) Network

Use the final representations for FC([Y; x7;q|) = a

Q

12
Hu, et al. Language-Conditioned Graph Networks for Relational Reasoning . ICCV’19



Modeling Approaches - Graph Traversal

Neural State Machine (NSM)

A scene graph of object attribute and relations is
computed. These representations are shared with the text
embedding.

Successively compute the probability of object x; as the
traversal object for question step c; :

Take the final object with the highest attention to answer
the query.

Hudson, Manning. Learning by Abstraction: The Neural State Machine. NeurlPS’19

Pretrained GloVe Te

Imelge

Text Question
Embedding Embedding

Bi-LSTM
Encoder

Object Attention Encoder

a
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Modeling Approaches - Graph Traversal

Imelge

DREAM Text
Embedding

Encode images with a visual language transformers. Unicoder-
Encode text with XL-NET and minimize the graph distance

) VL
of the embeddings as well.

Message pass image and text features Graph Graph
Convolution Convolution

Graph

Distribution attention weights between objects to retrieve a Attention

a

Zhong, et al. Reasoning Over Semantic-Level Graph for Fact Checking. arXiv
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Modeling Approaches - Neuro-Symbolic

Leverages the scene graph and the program
generator to softly traverse the graph to a

Computes embedding concepts for the program
tokens to match the corresponding object
attributes

Ex: Learn concepts sphere and W4, such
that(Wshape X ResNet(), sphere) ~ 1

Modular functions are hand coded and
differentiable

Mao, et al. The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences from Natural Supervision. ICLR’19
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Backprop REINFORCE
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Test Accuracy
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Objective: Do More with Less

» Datasets contain large number of data points.
* Datais cleanly annotated and rich.

* How can we perform well on less data?



Validation accuracy

Model Results on CLEVR

Model validation accuracy vs % training data
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Model Results on CLEVR - NSCL Strategies

Curriculum Learning End-to-end vs Intermediate Supervision
QO Initialized with DSL and executor.

[] Lesson1: Object-based questions. Q@ Program Representations Concepts OQutputs
! |

Q: What is the shape of the red object?

A: Cube. Filter

Green Cube | l o

Lesson2: Relational questions.

_Relate Obiect 2 o Teft |

I_ll Red l___

Q: How many cubes are behind the

sphere? :

A:3

Filter

Q: Does the red object left of the green '
cube have the same shape as the Filter
purple matte thing? .
A: No |

L oy
Loy
LIy
L g

Purple Matte | l _

I
Object 1 Object 3
Deploy: complex scenes, complex questions AEQuery | Pl PP Shape ‘ No (0.98) ‘

Q: Does the matte thing behind the big '
sphere have the same color as the v
cylinder left of the small matte cube?

A: No.

1
1
1
1
1
1
O]
1
1
1
1
1
1
I::] Lesson3: More complex questions. ]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
l
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Mao, et al. The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences from Natural Supervision. ICLR’19
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Model Results on CLEVR - Less Labels Results

0.5

Only using 3.5k
samples out of
700k (0.5%)!

Model validation accuracy vs % training data

—e—NSCL
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Research Directions

Modular Network functions are hand coded and must be differentiable.

Using neural networks instead are simple to instantiate, but difficult to train end-to-end.

“ Vg E[a = a
Filtery (X)) Relatey (X)) Filtery (X,)
' !
[0.90.10.0.56] [0.1.86.34.09]
< Vo E[@ = a] + E[IS = IS]
[1.00.00.0 1.0] [1.0 1.0 0.0 0.0]

Can we leverage our intermediate supervision (IS) results efficiently?
Evaluate function complexity versus label requirements.

22



Research Directions

Similarly, can we use generic functions that do not have to be differentiable?

Filter(X,) Relate(X,) Filter(X,)
| |
Upstream, -« [1001] 0400] Vo E[r | a
’ [1001] [1100] ’

We need to leverage reinforcement; how should we define our reward?

Q

al

23



Labeling by Abduction

 What if we don’t have intermediate supervision?

* We have to enumerate the possible intermediate labels till the answer is satisfied

 Given our current predictions, what is the simplest change needed? Explore abductive
reasoning!

Background U Hypothesis & Observation

Modules U Pedictions = Answer



Labeling by Abduction

What are the minimal changes needed to “correct” the predicted intermediate labels

___________________________________________________________________________________________

Input Data Abduction Policy 7y

Image

1 I 1 ]
1 I 1 I
1 || I
1 || |
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1 | 1 1
! P Trial 1 !
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: Program . Y ________ Yy _____. : |
! o Symbolic Execution o Trial N !
| | ’ ¥ :
| i Filter Red ' A B C |
: B ] R b2
; Filter Red . C ! 0 1 1] :
i P : 1 I
1 [ | [ | I
1 | 1 | 1 1
| ¥ 1#£2 1 Y :
I o 1 C:Red I
1 [ | [ | I
' Answer: 2 : : : : :
1 .

: L | | BackProp |

___________________________________________________________________________________________
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Results on CLEVR

 Trained on 7 supervised image scene graphs (7/70k =0.01%)
* Minimize edit distance between predicted and abduced labels

A === =T

90 —— AB-VQA
—g— NS-CL
80 - NS-CL Burn In
REINFORCE

70 - - - NS-VQA (upper bound)

QA accuracy

2000 4000 6,000

Question Answer Pairs Used



Labeling by Back Search

When encountering an incorrect answer work backwards to find corresponding labels.

@ 14
* \
JEIAY =39 — 70 NF
E d o 3 * 9 4
=P Forward pass 4=== Conditional
<4 Backward pass Backward pass
CLEVR validation set
1.0 - o ®
e —— |
0.8
> NS-RL
= 0.6 NGS-RL
2 NGS-1-BS
< 0.4 NGS-10-BS
0.2-
.__.__.___.——0——0——‘._'_.__'
0k 5k 10K 15k 20k 25k 30k

Number of iterations 29

Li, et al. Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning. ICML’20



Visual Reasoning
Part ll: Video Understanding



Video Reasoning

Introduce an extra temporal dimension to our VQA task.
Many applications in video summarization and understanding.

Methods involve a large end to end network but cannot reliably capture the state space over
long periods of time.

Can we model this state space discretely for reasoning tasks?



CATER Dataset

e 4 basic atomic action events, rotate, relocate, slide, contain.

e Multiple reasoning tasks.

slide )
- contain
pick-place | ‘

Task 1: Atomic action recognition Task 2: Composite action recognition S0 i w | lac
Actions present: Actions absent: Compositions present: Compositions absent: Task 3: ------ ------
- slide(cone) - rotate(snitch) - pick-place(sphere) - contain(cone, snitch) Snitch - s X
- pick-place(cone) - pick-place(cube) DURING slide(cone) DURING slide(cone) L lzation =+t
- contain(cone, snitch) - slide(cylinder) - contain(cone, snitch) - rotate(cube) AFTER ocalization  :s: | [ i m
- pick-place(sphere) - rotate(cylinder) AFTER slide(cone) slide(cone)

32



CATER Dataset: Baseline

Tested on variations of a 3D CNN model (R3D).

Action

100

90

:
— () .

[3D ConvNetJ {SD ConvNet} g o0
Images Optical j:
1to K Flow 1to K[| 0

time

Carreria, Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. NeurlPS’19

Task 1 mAP

CATER R3D Performance

Task 2 mAP

Task 3Acc

Task 3Acc(Top 5)
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CLEVRER Dataset

Physics dynamics of moving objects.

Introduces multiple question types:

(a) First collision (b) Cyan cube enters

L. Descriptive

Q: What shape is the object that collides with the cyan cylinder? A: cylinder
Q: How many metal objects are moving when the video ends? A: 3

II. Explanatory

Q: Which of the following is responsible for the gray cylinder’s colliding with the cube?
a) The presence of the sphere
b) The collision between the gray cylinder and the cyan cylinder A: b)

Yi, et al. CLEVRER: Collision Events for Video Representation and Reasoning. ICLR’20

(c) Second collision (d) Video ends

III. Predictive

Q: Which event will happen next

a) The cube collides with the red object

b) The cyan cylinder collides with the red object A:a)

IV. Counterfactual
Q: Without the gray object, which event will not happen?

a) The cyan cylinder collides with the sphere
b) The red object and the sphere collide A:a) b)

35



CLEVRER Dataset

Like CLEVR, the ground truth interactions and the program structure are provided.

Objects Events
ID 1 2 3 4 5 Mode Observation Pred. CFE.
Color Cyan Gray Yellow Red Red Frame 50 65 70 155 70
Material Rubber Metal Rubber Rubber Metal Type Collision Enter Collision | Collision | Collision
Shape Cylinder = Cylinder Sphere Sphere Sphere Object ID 1,4 5 1,2 4,5 2,4

Question: What shape is the first object to collide with the cyan object?

Program: query_shape(get_col_partner(filter_order(filter_collision(Events, filter_color(Objects, Cyan)), Answer: Sphere
First), filter_color(Objects, Cyan)))

36



CLEVRER Dataset: Baselines

Baselines includes a physics
propagation network (NS-DR) and a
GQA model baseline (MAC).

Patches

-‘:55,%

Masks Positions

Tt—2, Yt— 2

iUt 1) Yt— 1)

Prediction

. D $t+1ayt+1

J

Learned
/ Dynam1cs /
(O—2..4, Rt 2..t) Ot+17 Ryy1)
Methods Descriptive Explanatory Predictive Counterfactual
per opt. per ques. peropt. perques. peropt. per ques.
NS-DR 88.1 87.6 79.6 82.9 68.7 74.1 42.2
NS-DR (NE) 85.8 85.9 74.3 75.4 54.1 76.1 42.0
MAC (V+) 86.4 70.5 22.3 59.7 42.9 63.5 25.1

Li, et al. Propagation Networks for Model-Based Control under Partial Observation. ICRA’19
Hudson, Manning. Compositional Attention Networks for Machine Reasoning. ICLR’18
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Research Directions

o CATER contains a variety of event models while CLEVRER contains events and a flavor of time
series forecasting.

o Current methods rely on modeling temporal interactions in a probabilistic setting

o R3D: Encodes representation in a temporal recurrent model, requires more complex or longer videos to
generalize well. This is a state space retrieval.

o NS-DR: Models are similarly defined by recurrent networks and have a graphical flavor of the interactions
between objects. This is state space inference.

o Can we leverage explicit state spaces and reason over the tasks using temporal logic?



Conclusion

Rich applications in multi-modal vision and text reasoning.

Most dataset challenges are label rich, unlike real world tasks.

There is inherent structure in reasoning tasks, how do we leverage these to build label
efficient models?
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