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Machine Reasoning
There are many works that optimize ML models by themselves. 

How are these models leveraged in a larger system?

2
Nyga, et al. Grounding Robot Plans from Natural Language Instructions with Incomplete World Knowledge. CoRL’18



Visual Reasoning
Part I: Visual Question Answering



VQA Motivation
Testbed in visual question answering (VQA). Why is it  hard?

• There are not a fixed number of output labels.

• Questions are compositional in nature, thus many possible inputs.

Can we leverage the structure of scenes and questions to reduce the data requirement?
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VQA Datasets
Given an image and question, how do we arrive to the answer?

5Johnson, et al. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. CVPR’17
Hudson, Manning. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. CVPR’19



VQA Datasets
Auxiliary labels such as scene graphs and functional programs provided.
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Program structure for VQA data
CLEVR
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“What color is the large round object is to 
the left of the green cylinder?”

Filter ( [green, cylinder] ) 1

Relate (        , left)1

Filter (         , [round, large] )

2

2

12
2

2

3

3 2

Program Selection

Johnson, et al. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. CVPR’17

A: Red



Program structure for VQA data
GQA
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“What is the yellow food to the left of the 
small girl that is holding the hamburger?”

Filter ( hamburger ) 1

Filter (         , [small, girl] )

2

2 3

Program Selection

Relate (        , holding)

Relate (        , left)

Filter (         , yellow] )

1

3 4

54

1

2 3

4

4

4

4

4 5

Hudson, Manning. GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering. CVPR’19
A: Fries



Modeling Approaches
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Deep Networks Modular Networks

Cross-Modal 
Transformer

Object 
Embedding

Text     
Embedding

Program     
Generator

Scene 
Graph 

Generator

Modular Network
Filter

Relate
Filter

Image Text Object 
Embedding

Text     
Embedding

Image Text

Tradeoffs:
1) Implementation
2) Interpretability
3) Label requirements



Modeling Approaches - Transformers
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Cross-Attention BERT

Object 
Embedding

Text     
Embedding

Image Text

Image 
BERT

Language 
BERT

FC

!𝑎

Embeds both the text and image features 
through the BERT encoder

Constructs a joint representation of the 
image and language BERT features

Pretrained on VQA and image training 
splits, FC fine tuned on each task

Object Embedding through R-CNN and ResNet
Text Embedding initialized from scratch

Tan, Bansal. LXMERT: Learning Cross-Modality Encoder Representations from Transformers. EMNLP’19

LXMERT



Modeling Approaches - Transformers
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Shared BERT

Object 
Embedding

Text     
Embedding

Image Text

Image 
BERT

Language 
BERT

!𝑎

Same as LXMERT

Disjoint Language and Image encoder 
for pretraining

Modular network functions as cross-modal 
transformers

Liu, et al. Static-Dynamic Reasoning via Functional Programs. (WIP)

Modular Network
Filter!

Relate!
Filter!

SVDR



Modeling Approaches – Graph Traversal
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Language-
Conditioned Graph 

Network

Object 
Embedding

Text     
Embedding

Image Text

Bi-LSTM 
Encoder

FC

!𝑎

Use LSTM to encode question 𝑞
Text commands 𝑐" ∣ 𝑞 are encoded for 𝑇 timesteps

Message passing on the 
object embeddings 𝑥#
occurring 𝑇 times:

Hu, et al. Language-Conditioned Graph Networks for Relational Reasoning . ICCV’19

𝑤$#" computed from 𝑥#"%&, 𝑥$"%&, 𝑐"
𝑚$#" computed from 𝑤$#" , 𝑥$"%&, 𝑐"
𝑥#" = 𝐹𝐶 ([𝑥#"%&; ∑$𝑚$#" ])

Use the final representations for 𝐹𝐶 ∑# 𝑥#'; 𝑞 = !𝑎

Language Conditioned Graph 
Networks (LCGN)



Modeling Approaches – Graph Traversal
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Object Attention Encoder

Object 
Embedding

Question     
Embedding

Image Text

Bi-LSTM 
Encoder

argmax

!𝑎

A scene graph of object attribute and relations is 
computed. These representations are shared with the text 
embedding.

Successively compute the probability of object 𝑥# as the 
traversal object for question step 𝑐" :

Hudson, Manning. Learning by Abstraction:  The Neural State Machine. NeurIPS’19

Take the final object with the highest attention to answer 
the query.

Neural State Machine (NSM)

Scene Graph Generator

Text     
Embedding

Pretrained GloVe



Modeling Approaches – Graph Traversal
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Graph 
Convolution

Object 
Embedding

Text     
Embedding

Image Text

XL-NET*

!𝑎

Encode images with a visual language transformers. 
Encode text with XL-NET and minimize the graph distance 
of the embeddings as well.

Message pass image and text features

Zhong, et al. Reasoning Over Semantic-Level Graph for Fact Checking. arXiv

Distribution attention weights between objects to retrieve !𝑎

DREAM

Graph 
Convolution

Unicoder-
VL

Graph 
Attention



Modeling Approaches – Neuro-Symbolic
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!𝑎

Leverages the scene graph and the program 
generator to softly traverse the graph to !𝑎

Computes embedding concepts for the program 
tokens to match the corresponding object 
attributes

Ex: Learn concepts 𝑠𝑝ℎ𝑒𝑟𝑒 and 𝑊()*+, such 
that 𝑊()*+, × 𝑅𝑒𝑠𝑁𝑒𝑡 , 𝑠𝑝ℎ𝑒𝑟𝑒 ≈ 1

Modular functions are hand coded and 
differentiable

Mao, et al.  The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences from Natural Supervision. ICLR’19

Program     
Generator
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Graph 

Generator

Modular Network
Filter
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Model Results on CLEVR
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Model Results on GQA
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Objective: Do More with Less

• Datasets contain large number of data points.

• Data is cleanly annotated and rich.

• How can we perform well on less data?
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Model Results on CLEVR
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Model Results on CLEVR – NSCL Strategies
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Mao, et al.  The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences from Natural Supervision. ICLR’19

Curriculum Learning End-to-end vs Intermediate Supervision



Model Results on CLEVR – Less Labels Results
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Only using 3.5k 
samples out of 
700k (0.5%)!



Research Directions
Modular Network functions are hand coded and must be differentiable.

Using neural networks instead are simple to instantiate, but difficult to train end-to-end.
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Can we leverage our intermediate supervision (IS) results efficiently?
Evaluate function complexity versus label requirements.

Filter!(𝑋-) Relate!(𝑋&) Filter!(𝑋.)

∇! 𝔼[!𝑎 = 𝑎]

[0.9 0.1 0.0 .56]

[1.0 0.0 0.0 1.0]

[0.1 .86 .34 .09]

[1.0 1.0 0.0 0.0]
∇! 𝔼 !𝑎 = 𝑎 + 𝔼[ N𝐼𝑆 = 𝐼𝑆]

!𝑎



Research Directions
Similarly, can we use generic functions that do not  have to be differentiable?
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We need to leverage reinforcement; how should we define our reward?

Filter(𝑋-) Relate(𝑋&) Filter(𝑋.)

[1 0 0 1]

[1 0 0 1]

[0 1 0 0]

[1 1 0 0]
∇! 𝔼 𝑟 ∣ !𝑎 ≈ 𝑎

!𝑎

Upstream!



Labeling by Abduction
• What if we don’t have intermediate supervision?

• We have to enumerate the possible intermediate labels till the answer is satisfied

• Given our current predictions, what is the simplest change needed? Explore abductive 
reasoning!
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𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 ∪ 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 ⊨ 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

𝑀𝑜𝑑𝑢𝑙𝑒𝑠 ∪ 𝑃𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ⊨ 𝐴𝑛𝑠𝑤𝑒𝑟



What are the minimal changes needed to “correct” the predicted intermediate labels

Labeling by Abduction

26



Results on CLEVR
• Trained on 7 supervised image scene graphs (7/70k = 0.01%)
• Minimize edit distance between predicted and abduced labels

27



Labeling by Back Search
When encountering an incorrect answer work backwards to find corresponding labels.

29
Li, et al. Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning. ICML’20



Visual Reasoning
Part II: Video Understanding



Video Reasoning
● Introduce an extra temporal dimension to our VQA task.

● Many applications in video summarization and understanding.

● Methods involve a large end to end network but cannot reliably capture the state space over 
long periods of time.

● Can we model this state space discretely for reasoning tasks?
31



CATER Dataset
● 4 basic atomic action events, rotate, relocate, slide, contain.

● Multiple reasoning tasks. 

32



CATER Dataset: Baseline
Tested on variations of a 3D CNN model (R3D).

34
Carreria, Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. NeurIPS’19
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CLEVRER Dataset
Physics dynamics of moving objects.

Introduces multiple question types:

35
Yi, et al. CLEVRER: Collision Events for Video Representation and Reasoning. ICLR’20



CLEVRER Dataset
Like CLEVR, the ground truth interactions and the program structure are provided.
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CLEVRER Dataset: Baselines

Baselines includes  a physics 
propagation network (NS-DR) and a 
GQA model baseline (MAC).

37Li, et al. Propagation Networks for Model-Based Control under Partial Observation. ICRA’19
Hudson, Manning. Compositional Attention Networks for Machine Reasoning. ICLR’18



Research Directions
● CATER contains a variety of event models while CLEVRER contains events and a flavor of time 

series forecasting.

● Current methods rely on modeling temporal interactions in a probabilistic setting

○ R3D: Encodes representation in a temporal recurrent model, requires more complex or longer videos to 
generalize well. This is a state space retrieval.

○ NS-DR: Models are similarly defined by recurrent networks and have a graphical flavor of the interactions 
between objects. This is state space inference.

● Can we leverage explicit state spaces and reason over the tasks using temporal logic?
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Conclusion
● Rich applications in multi-modal vision and text reasoning.

● Most dataset challenges are label rich, unlike real world tasks.

● There is inherent structure in reasoning tasks, how do we leverage these to build label 
efficient models?
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