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ABSTRACT

Deep learning is a growing field due to ongoing collection of data
and the increase in compute power. Many of these data collec-
tions are represented as graphical structures in comparison to the
more common tabular data structures. There has been a recent
interest in the deep learning community to leverage these graph
structures within models to encode spatial dependencies for better
modeling performance. These graph representations often have a
temporal component as well that are modeled by recurrent deep
learning techniques to create spatio-temporal graph neural net-
works (STGNNs). This application is being applied for traffic speed
prediction, where sensors in a grid are measured over time. We
compare different STGNNs tested on traffic prediction to determine
the current advances in the field. We conclude by discussing the
growing applications of STGNNS in other pertinent fields.

1 INTRODUCTION

Neural network architectures efficiently encode non-linear patterns
in large scale datasets into compressed representations for predic-
tion. Most of these algorithms are applied on grid-like samples,
such as a vectorized table or an image. While many data sources
and prediction problems can be fulfilled in this manner, recent re-
search has been dedicated to applying these techniques to graphs.
Graphs do not follow this rigid structure as nodes are connected
to a variable number of edges within the graph. This has led to
development of geometric deep learning techniques over graphs
and manifolds [1] to handle this variable structure, such as graph
neural networks (GNNss).

Within the works on GNNs, there are multiple directions of
research [7]. One task is to create an embedding representation
for a node within a graph with respect to the features of other
nodes. This task is further used to create embeddings for an entire
graph, which is useful when comparing entire networks structures
with each other, such as comparing the similarity of molecules.
Such tasks can be done without any prediction objective, as these
methods only rely on the underlying structures between nodes and
their corresponding subgraphs.

These representations can be used for prediction as well. For a
node, given information regarding its neighboring nodes, we may
be interested on predicting a value for that node. An application
of this is to detect if a user in a social network is actually a bot.
Similarly we want to discover hidden relationships between nodes
and infer edges. Edge inference is commonly used to generate
recommendations to a user given an database of items connected
to other users.

Some of these graphical data sources are dynamic, where the
values of the edges or nodes change over time. A prominent example
is traffic data, which are composed of traffic sensors arranged in
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a graph-like structure and capture the speed of traffic over time.
This information is critical in determining congestion, which is a
factor in routing a driver to their destination. Due to the availability
and size of these datasets, STGNN variations have been employed
to predict these speed values over time. There are review papers
[19, 23] that cover these traffic STGNN models, but we review and
compare four of these STGNN variations in more detail. We follow
this by discussing how these STGNN techniques are applied to
other problems as well.

2 TRAFFIC SPEED PREDICTION METHODS

Traffic speed prediction has been a crucial problem before STGNN
methods and have been modeled in various ways :

e Historic Average: Takes the average values of that sensor
over periods of time.

o Ridge Regression: Models the historical values with linear
regression with a regularizer term.

o Auto-regressive (AR) models: These models similarly look
at historical sensor values with the forecasting errors made.
Commonly used methods are Spatiotemporal AR [14].

e Long Short-Term Memory (LSTM) [8]: Deep learning models
that sequentially process historic sensor data to fit future
sensor values.

In general these models lack local contextual information of the
sensor network or fail to fit non-stationary distributions over time.
STGNN models attempt to address these issues with spatial and
temporal encoding mechanisms.

2.1 Diffusion Convolutional Recurrent Neural
Network (DCRNN)

An initial approach to view traffic flow is the diffusion of vehicles
throughout a system of traffic sensors. This diffusion is non-trivial
since the traffic dynamics vary from location to location. Simply
linking the nearest sensor nodes may not be correct as these edges
are directional with respect to traffic. To model this diffusion process
across the sensor nodes, DCRNN [12] performs a random walk from
each node, keeping track of nodes encountered. This approximates
the likelihood that vehicles entering one node will pass through
another as no road connection information was provided. This is
done in a bi-directional fashion to capture traffic relationships in
either direction. Using this sampling method, embeddings for the
nodes that are likely to be connected are trained to have similar
representations for that time step.

This diffusion can be modeled at different time steps and fed into
a Gated Recurrent Unit (GRU) network [3], which similar to the
LSTM encodes the entire sequence of historical sensor signals. This
temporal representations are then fed into a Sequence to Sequence
architecture [16]. Here the representations are first encoded with



diffusion GRU blocks to provide a salient representation of the
spatio-temporal data. A decoder, with diffusion GRU units as well,
is trained to break down these encoded representations to predict
the sensor network at the next time slice.

2.2 Gated Attention Networks (GaAN)

The GaAN architecture [22] uses graph aggregation [6] to build the
sensor node embeddings as opposed to the random walks performed
by DCRNN. A graph aggregation on a node is an estimation of that
node value through the aggregation of its neighbors. This can be
done by simply summing or averaging the neighborhood node’s
features. However due to varying importance of neighboring nodes,
additional steps are taken to weight a neighboring node’s influence
on a particular node.

This is handled by an attention layer which is trained to weight
the effects of neighboring nodes on a particular node [18]. Multiple
attention models can be computed, called attention heads, which
apply different weights based on the subspace of information each
attention model may capture [17]. The effect of the heads is applied
uniformly so GaAN introduces a methodology to control the effects
of all these attention heads with gates. This is done by adding
another layer above the attention heads to compute the importance
across the heads when training.

Using this methodology, graph aggregation is improved due to
the tuning of neighboring node importance. This can be seen as
targeting the neighboring sensors versus sampling them as done in
DCRNN. This spatial information per sensor is combined for each
time step and fed into a GRU to construct a Graph GRU (GGRU).
This is similarly fed into an encoder decoder network to predict
the traffic speed for the following time steps.

2.3 Spatiotemporal multi-graph convolution
network (ST-MGCN)

Constructing spatial features between intermediate nodes only
encompasses a part of the true underlying spatial correlations. ST-
MGCN [5] leverages global correlations in traffic networks through
multiple sub graphs of the original graph. Graph aggregation can be
performed across graphs using these global correlations to best en-
code these representations. This starts by defining multiple factors
that influence between a node and any other node in the graph:

e Neighborhood: The adjacent nodes to a particular node,
which is used for standard graph aggregation.

e Functional Similarity: Determining which regions of the
network have similar functions, such as cities or parks.

o Transportation Connectivity: A mapping of the physical road
connections between sensor nodes.

Each of these factors have a role of how traffic flows and are used
to define the spatial graph aggregation to generate a robust repre-
sentation over the entire network.

When predicting the traffic in a certain region, the first step
involves re-weighting the previous time steps using a gating mech-
anism. This is done by concatenating the historical information for
that region and related regions over time. The graph aggregation
over this joint representation is computed and its attention is used
to re-weight the samples at the previous time steps to highlight the
relevant time samples. These weighted time steps are then fed into
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a recurrent neural network (RNN) [13] trained to predict the next
time step for all nodes.

2.4 Spatio-Temporal Graph Convolutional
Networks (STGCN)

The previous methods discussed used spatial estimation compo-
nents in combination with a recurrent network, GRUs or RNNs, to
encode traffic spatio-temporal components. STGCN [21] takes a
different approach for the temporal encoding by running a 1-D con-
volution over the sensor nodes. This involves taking a fixed number
of sensor time steps and projecting them into a lower dimensional
space. Unlike typical convolutional kernels, these convolutions
leverage gated linear units (GLU) [4] to only convolve over the pre-
vious timesteps and have a gating mechanism to determine which
kernels are useful, completing the temporal gated-conv process.

Given temporal features for each sensor, graph aggregation is
then performed to capture the neighboring spatial features. This
representation is further fed into another temporal gated-conv
process to further compress the temporal dimension.

These ST-Conv blocks composed of temporal, spatial, then tem-
poral aggregation can be stacked until the final prediction layer
which predicts the sensor speeds at the next time step. This architec-
ture leads to a computational performance improvement over the
DCRNN method and trains 10-15 times faster due to the completely
convolutional structure, which are not restricted to recurrent com-
putation.

3 METHOD COMPARISONS

The methods we reviewed had different approaches to 1) encode
spatial information of traffic data and 2) represent this spatial in-
formation over time. These relations are summarized as follows:

Model Spatial Structure Temporal
Structure
DCRNN random walk GRU
GaAN gated graph aggregation | GRU
ST-MGCN graph aggregation with | RNN
objectives:
e neighborhood
e functional
e transportation
STGCN graph aggregation 1-D CNN
with GLU

Each method used different approaches to solve these two tasks
and have corresponding accuracy and efficiency trade-offs. We see
for the order DCRNN, STGCN, GaAN and ST-MGCN, the spatial
structure composition becomes increasingly advanced. DCRNN
samples to estimate its spatial representation, while STGCN and
GaAN build thier representations from their neighbors directly.
ST-MGCN is able to use the extra contextual information to best
encode the underlying spatial representation of the sensor nodes.

The DCRNN, GaAN, and ST-MGCN further encode this spatial
representations at each time slice through recurrent models. Due to
this procedure, these methods typically take longer to train as the
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spatial representation has to be fed into the recurrent model sequen-
tially. This gives an Advantage to STCCN in terms of performance
due to the scalability of convolution operations.

The predictive performance of each models varied by applica-
tion. When predicting the traffic speed in METR-LA [9], a dataset
of highway sensors in Los Angeles, GaAN is able to outperform
DCRNN. Similarly in PeMSD?7 [2], collected from California high-
way sensors, STGCN outperforms DCRNN as well due to its simpler
architecture. For Ride-share demand forecasting ST-MGCN proves
to improve over the STGCN approach due to the extra graph aggre-
gation objectives. We surmise that various architectures need to be
tested and iterated on based on the specific dataset and objective.

4 OTHER STGNN APPLICATIONS

STGNNs have been applied to traffic prediction problems due their
graphical nature and abundance of time slices. These similar archi-
tectures have been leveraged in other domains as well.

In RE-NET [11], multi-relational knowledge graphs over time
are used for event prediction. There are works in human pose
classification and forecasting as well. This is done by rolling out
a spatial graph through time as done in Structural-RNN [10], and
by running graph aggregation across time slices in ST-GCN [20]
(A different architecture from the STGCN described earlier). In the
healthcare domain, medication for a patient are predicted by G-
BERT [15] by their historical medications and diagnoses, which are
represented in hierarchical fashions.

As STGNN methods become more efficient in encoding spatial
and temporal structures, more of such applications can be pursued
that have less data compared to traffic data sets.

5 CONCLUSION

The advancements of deep learning have led to the development of
graph inference methods. These methods range from predicting a
node to embedding entire graphs by constructing a spatial represen-
tation of graph nodes. When graph data is presented sequentially,
these spatial representations are extended into the temporal space
with STGNN architectures. Due to their graphical structure and
abundance of data points, we focus on traffic prediction problems.
We review four architectures and discuss their spatial structures,
temporal structures, and compute trade-offs. We conclude by dis-
cussing how STGNNS are being used to solve other problems as
well.
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