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1 Introduction

The quality of care patients receive in hospitals is directly correlated with the medical staff
and resources available. To provide such a service, hospital providers have historically
used heuristics to determine how to allocate medical staff, such nurses, to each hospital
service. A common heuristic is the nursing intensity score, which is a composed of many
administrative and care related tasks [1]. These heuristics are typically static and do not
accurately predict the necessary workload needed by medical staff. Due to these issues,
there is typically administrative overhead and burnout observed with these practitioners
[2]. Incorrect patient forecasting requirements also lead to monetary costs of unproductive
over staffing, and with under staffing, poor patient care [3]. To improve the mental health
of these medical staff, and thus the patients, more dynamic heuristics have been proposed
based on feedback from these staff and patient volume [4].

There are many works that explore modeling the patient volume component of these
heuristics which is becoming more feasible with the availability of Electronic Health
Records (EHRs). These records contain detailed records or diagnosis, procedures, drugs
administered for each patient over time. Leveraging this data to predict future patient
volume has been explored in both the traditional time series forecasting, and more recently
with more complex machine learning models. These machine learning models have proven
to extract salient features from complex data sets in order to perform prediction tasks and
have been leveraged for time series forecasting.

In the patient forecasting use case, we leverage the patient diagnosis data which is
defined through the International Classifications of Diseases (ICD) hierarchy. Our model
encodes this hierarchical relation using graph neural networks as part of an end to end
architecture for patient forecasting. With this model we provide more accurate patient
forecasting for various levels of diagnoses in the hierarchy, ranging from total patient
volume to patient volume for a specific diagnosis. While previous work focus on total
patient forecasting or a specific diagnosis, we have developed a single modeling framework
to more accurately forecast a broader range of diagnoses using data from multiple providers.

This is important as it provides provider more granular predictions of diagnosis volume,
which can lead to better allocation of health practitioners. This is especially crucial for
certain complications and co-morbidity diagnoses which are critical to patients and cost
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insurers $31 billion annually [5]. We compare our model to the traditional methods used.
Such exploration can better prepare medical staff to handle these diagnoses and minimize
these incurring costs.

2 Related Works

To mitigate costs of over and under staffing, various time patient forecasting models have
been explored at the patient level. There are traditional time series approaches that
have been tested using Autoregressive Integrated Moving Average (ARIMA) with various
levels of seasonality (SARIMA), and data processing [3]. SARIMA and Simple Exponential
Smoothing (SES) models have been tested to predict daily patient volume within hospitals
[6] and emergency departments [7] respectively. Averaging of multivariate time series
models over patient volume and other temporal factors have also been tested to efficiently
[8].

In addition to traditional time series methods, machine learning techniques have been
applied to patient forecasting as well. A hybrid approach of wavelet decomposition and
neural networks were successfully applied to hospital volume predictions [9]. Other deep
learning models including Convolutional Neural Networks (CNNs), Long Short Term Mem-
ory networks (LSTMs), and boosted trees through Extreme Gradient Boosting (XGBoost),
were tested, where XGBoost provided the best performance over the other machine learn-
ing and time series models [10].

With hierarchical structured data such as diagnosis and drug codes, we also explore
time series methods that leverage this structure. Hierarchical time series methods that
decompose hospital occupancy into their sub-divisons for more targeted analysis [11].
There are works that encode these codes using Graph Neural Network (GNN) techniques
to get a salient join representation for each code with respect to its neighbors [12]. These
features have also leveraged in the forecasting domain, where each time component can be
represented as a graph structure. These works are prominent in traffic forecasting, where
the sensor nodes are arranged in a grid like pattern and a temporal structure captures the
relationship across these GNN representations [13, 14, 15, 16].

In these traffic prediction use case, the graph structure contains different sensor values
at each time period. In our patient and diagnosis forecasting, we leverage co-occurrence
relations seen in the EHR data. This is used in turn to model patient volumes for spe-
cific critical diagnoses, which provides more actionable insights to support health worker
staffing. The diagnosis modeling varies per healthcare provider, and is augmented by
available diagnosis patterns from other providers.

3 Problem Formulation

Our objective is to forecast the number of diagnosis ydxt at time step t given data from
T slices of previous patient records. Each of these time slices are aggregated patient data
in windows of 7 days, which gives adequate time to plan for staffing distribution. Given
batched patient records Xt which contain the volume for all diagnosis during batch t, we
want to predict the diagnosis volume ydxt for one specific diagnosis at t.

This is done by finding our model f ∈ RTxD → R. This is a mapping from T slices
with D diagnosis counts to a single diagnosis count ydxt . Our objective function can be
defined as follows:

A = {Xt−1, ..., Xt−T }
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f̂ = argmin
f
||ydxt − f(A)||1

We are interested in the L1 loss over L2 to avoid over correcting to large deviations
and noise seen in provider data.

4 Method

To leverage historical diagnosis information, a co-occurrence graph is built over the EHR
data. This representation is used by a hybrid temporal GNN model with an Autoregres-
sive component. Our model, LISP, is first pre-trained using data from certain providers
(Selective Pre-training) and fine tuned for the provider of interest (Localized Inference).

4.1 Diagnosis Co-occurrences

To represent diagnosis codes in a graphical fashion, a starting point is to use the ICD
hierarchy. This taxonomy of diseases is useful for insurance and billing purposes, where
sub-classes of diagnosis can be identified quickly. For the purposes of forecasting, it is
imperative to find relationships between diagnosis that have a direct correlation with their
observation volume. This does not directly occur within the ICD hierarchy, as neighboring
diagnosis are structurally similar but may not be predictive of one another.

The co-occurrence graph is built as follows in order to limit the computational com-
plexity during the model training process. We choose a subset of diagnosis dxs to include
in our graph account for α % of the overall cumulative distribution of all diagnosis dx in
the EHR data.

α =
∑
t∈dxs

fdx(t)

Our selected dxs determine the nodes used in our graph. For each diagnosis in dxs,
a similar thresholding is conducted to limit the number of co-occurrence edges. For each
time slice in our data, the feature for each node is the count for that diagnosis within
the time slice. Each node feature are further normalized over the maximum occurrence of
those features over all time slices.

4.2 Temporal GCN Model

Given historical diagnosis information arranged in a structural manner. It is important
to define a model architecture that can leverage this information. The family of GNN
models have been proven to efficiently encode the graph node representations for end to
end training. With the normalized feature counts, we use a Graph Convolutional Network
(GCN) [17] to encode each time slice into a higher dimensional representation vector xh.
This leverages the node feature xv and aggregates it with its neighborhood N(v) with a
neighborhood normalization. For end to end training, this representation is multiplied
with weight parameters W and following by a non-linearity.

hv = σ(W
∑

u∈{N(v),v}

xu√
|N(u)||N(v)|

)

This representation can be repeated using hlv to produce a higher level representation
hl+1
v which can be interpreted as taking a larger hop neighborhood, as the convolution is

occurring on neighborhood representations that encode their neighborhoods in the previ-
ous step.
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Our model comprises of a GCN layer, followed by a 1-D CNN layer to compute temporal
features. This temporal representation is followed by another GCN layer and then is
followed by fully connected layers to predict the diagnosis volume.

4.3 Hybrid Approach

When training the temporal GCN on data from a single provider using a 7 day time
window, the number of data points may only be in the the 100’s. Compared to traffic
forecasting datasets which have 10,000’s of unique samples [15], using the same complex
architecture will overfit on our provider data, producing high variance estimates. To
mitigate this effect, an Autoregressive (AR) component is integrated into the model. This
is done by adding the predictions of the temporal GCN model with the AR output [18],
which helps control this variance. The AR component directly uses the historical values
of the diagnosis of interest {ydxt−1 , ..., ydxt−T } as it’s input.

4.4 Selective Pretraining

With the hybrid model in place will still have a difficult time generalizing past the training
set due the limited number of data points per provider. The GCN can better converge to
the underlying co-occurrence distribution by training on other providers as well. The key
limitation that prevents pre-training on any provider is that different providers will have
different distributions within their weekly diagnoses counts.

To address this, a different subset of providers must be taken for each diagnosis model.
The distribution diagnosis of providers must be compared with repect to our prediction
diagnosis. This is done by constructing a set of top K most frequent diagnosis within a
provider’s p EHR dataset, denoted as dxpK . For our diagnosis of interest dx we also want
to have its co-occurring values dxc in within the provider EHR such that dxpC = dx∪ dxc.
Given these sets, we select our dx specific providers Pdx from all providers Pall as follows:

Pdx = {p ∈ Pall;
|dxpK ∩ dx

p
C |

|dxpC |
> β}

Where β is our overlap threshold. With β ≈ 1 we identify that all co-occurring
diagnosis must be present, but are given fewer providers. On the opposite end, β ≈ 0
means that few co-occurring diagnosis signals are needed, thus more provider data sets
are returned. In practice β ∈ [0.2, 0.6] works well, with lower β better supporting less
common diagnoses.

Once the model has been pre-trained on the selected providers, it is trained on the
data from the provider of interest for fine tuning.

5 Experiments

5.1 Data

We use a data set provided by Truven Health Analytics, which contains health insurance
data for inpatient and outpatient cases form multiple providers from 2011 to 2015. Each
patient admission case contains the diagnosis for that visit as well as other patient specific
features and were timestamped per day. The diagnosis codes were converted to ICD-10
CM.

Based on the volume of diagnoses, other ICD codes within the hierarchy, including
complication and co-morbidity codes were selected for forecasting. We monitor the fore-
casts for metabolic disorders and a complication code for cerebral infractions.
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Figure 1: Here is the weekly patient volume at a certain provider. There are no clear trends
as and the mean of the distribution changes over time. There are also large deviations or
outliers based on the state of the provider and due to noise in the data set.

We focused our analysis on a single provider where the with 70%, 20%, and 10% of
the data for any provider were utilized for training, validation, and a holdout test set for
final evaluation.

5.2 Data Transformations

When observing the diagnosis counts in providers, it is difficult to observe any seasonal or
cyclical trends using week window granularity (Figure 1). Due to the many factors that
affect the diagnosis volume for a provider, it is common in time series task to perform
a data normalization task to transform the target values to follow a normal distribution.
With this, a model is tasked with predicting the variance at a certain time step and the
transformation can be reversed to follow the original distribution.

For this transformation we used a Box-Cox transformation, a power transform which
handles positive values. Since it is possible to have a 0 count for a diagnosis in a time
slice, we modified the transformation with a constant offset ε = 0.001. Given the original
diagnosis count ydx the transformed value becomes ytdx and vice versa using the inverse
transform.

ytdx =

{
log(ydx + ε) if λ = 0
yλdx+ε−1

λ otherwise
(1)

λ is computed through the MLE over a Gaussian distribution. To invert the transform,
a the inverse formulation follows.

ydx =

{
ey
t
dx − ε if λ = 0

(λytdx + 1)
1
λ − ε otherwise

(2)

In addition to a power transform, we also want to have a constant mean, which is
also not present in most forecast data. To accomplish this the target predictions were
differenced, where the difference between two consecutive ytdx were taken to generate the
target distribution that is trained on ytddx. When an inference from a model is made,
the predction must be de-differenced based on diagnosis volume value form the last time
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step and then the inverse Box-Cox is computed to provide a prediction ˆydxresembling the
original ydx.

5.3 Baselines

Based on the previous literature on patient forecasting [10], we select the following base-
lines to compare our results to: we compared our approach to the Seasonal ARIMA
method, which proves robust in high variance forecasting tasks. For SARIMA, a Box-Cox
Transformation was applied on the training data, and was differenced by 1. This was then
fed into a grid-search for parameter tuning.

We are interested in finding out how our model compares to these baseline methods
at patient and diagnosis forecasting at different levels.

5.4 Metrics

We measure the error between the true volume yk and our forecasted value fk as ek =
yk − fk for the kth item in the test set. We measure this through the root mean square
error (RMSE) and Theil’s U which are defined as follows:

RMSE =

√√√√ 1

K

K∑
k=1

e2k

Thiel′s U =

√
1
K

∑K
k=1 e

2
k√

1
K

∑K
k=1 f

2
k

√
1
K

∑K
k=1 y

2
k

RMSE measure the absolute squared error, while Thiel’s U normalizes this error with
respect to the size of the forecasts. RMSE is the traditional approach when comparing
methods within a single target data set. Thiel’s U performance is invariant of the data
distribution, which is more useful when evaluating performance over multiple data sets.

5.5 Results

For our evaluation we test our method on overall patient volume and two other critical
diagnosis. For each case since there are only a few test data points for each selected
provider, we take the average metrics across the top 10 largest providers used for each
task. We compare results across all diagnosis codes and then codes that are more specific,
with less data available.

Method RMSE Thiel’s U

SARIMA 1.526947 4.182187

LISP 1.546738 2.383069

Table 1: Results for predicting overall patient volume.

Method RMSE Thiel’s U

SARIMA 1.774082 4.586198

LISP 1.973802 0.691751

Table 2: Results for code J96.90: Respiratory failure, unspecified.

SARIMA slightly outperforms LISP with respect to RMSE and it is able to capture the
average volume well. However as volume data between different sources is heteroskedastic,
LISP better captures these features in the data, reducing the U statistic.
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Method RMSE Thiel’s U

SARIMA 1.764163 1.022248

LISP 1.956040 0.654381

Table 3: Results for code J18.9: Pneumonia, unspecified organism.

6 Conclusion

In general, we see that the traditional SARIMA is quite robust at predicting patient
volumes at different levels of the ICD hierarchy. With the lack of temporal data slices,
LISP attempts to aggregate code frequencies across different providers and normalize
them. This combined with an AR output helps control the variance of the deep learning
model.

In the future, we would like to try out other deep learning baselines such as LSTM,
Xgboost, and the original STGCN.
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